inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Bismuth(V) iron(III) tris(phosphate) oxide

Aicha Benabad,^a Karima Bakhous,^a Fatima Cherkaoui^a and Elizabeth M. Holt^b*

^aLaboratoire de Chimie du Solide Appliquée, Laboratoire Associé Francophone n501, Département de Chimie, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, Rabat, Morocco, and ^bDepartment of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA Correspondence e-mail: betsy@biochem.okstate.edu

Received 21 September 1999 Accepted 13 July 2000

 $Bi_{0.4}^{V}Fe_3^{III}O(PO_4)_3$ crystallizes with two Fe atoms (one on an inversion centre and one on a mirror plane) displaying octahedral geometry and a third Fe atom (on a mirror plane) with trigonal bipyramidal coordination. Fe atoms are seen in oxygen-bridged chains. Bi^{V} atoms are found in the interstitial sites between these chains. Bi shows sevenfold coordination, with Bi–O distances between 2.357 (7) and 2.529 (6) Å.

Comment

There have been numerous studies of oxyphosphate structures (Tordjman *et al.*, 1974; Abraham *et al.*, 1994; Mizrahi *et al.*, 1997). In particular, compounds of the type $A^{T}B^{TV}OPO_{4}$ have been of interest because of their non-linear optical properties (Voloshina *et al.*, 1985: Harrison *et al.*, 1990; Thomas *et al.*, 1990). Structures of the form $A_{x}B_{y}O(XO_{4})_{3}$, where X is P or Si, A is a mono- or bivalent cation, and B is a trivalent cation, have not appeared widely in the literature. Among those known are CaLa₄O(SiO₄)₃ (Schroeder & Mathew, 1978), seen in the hexagonal space group $P6_{3}/m$, and Pb₄BiO(PO₄)₃ (Moore *et al.*, 1982) and K₂Bi₃O(PO₄)₃ (Debreuille-Gresse *et al.*, 1986), both of which crystallize in the orthorhombic space group *Pnma*.

We have also noted that the natural mineral piemontite, $Ca_2Al_2M(SiO_4)_3OH$ (*M* is Fe or Mn; Dollase, 1969; Bonazzi *et al.*, 1992), seen in space group $P2_1/m$, resembles compounds of the type $A_xB_yO(XO_4)_3$. This structure is characterized by two sites of high coordination occupied by Ca and three octahedral sites occuped by Al and Fe/Mn.

We have prepared a new member of the oxyphosphate family, the title compound, $Bi_{0.4}^{V}Fe_3^{III}O(PO_4)_3$, and determined its single-crystal X-ray structure. Unlike the other known oxyphosphates, this structure crystallizes in the monoclinic space group $P2_1/m$.

Fig. 1 gives a projection view of the structure. The three Fe sites are situated on symmetry elements. Fe1 is found on a centre of symmetry with octahedral geometry [average Fe1-O 2.030 (5) Å]. Fe2 and Fe3 are seen on a mirror plane perpendicular to the *b* cell edge. Fe2 is octahedrally coordi-

nated [average Fe2–O 2.016 (6) Å], while Fe3 is found to have a trigonal–bipyramidal coordination geometry [average Fe3–O 1.939 (7) Å] (Fig. 2). The environment of Fe3 is different from that of the corresponding atom in CaLa₄O(SiO₄)₃, which shows a deformed octahedral geometry.

A view of the polymeric Fe array and the bridging O atoms in $Bi_{0,4}^VFe_3^{III}O(PO_4)_3$. Displacement ellipsoids are shown at the 50% probability level [symmetry codes (i), (iv), (v) and (vi) are as in Table 1; (viii) 1 + x, y, z; (ix) $1 + x, \frac{1}{2} - y, z$; (x) $1 + x, -\frac{1}{2} - y, z$; (xi) 1 + x, 1 + y, z; (xii) $1 - x, y - \frac{1}{2}, -z$].

Fe1O₆ edge-sharing octahedra form an infinite chain extending in the *b* direction, with an Fe1...Fe1 distance of 3.154 (1) Å. The three corner-sharing polyhedra, Fe1O₆, Fe2O₆ and Fe3O₅, form a pentamer in the sequence Fe3...Fe2...Fe1...Fe2...Fe3 [Fe1...Fe2 3.418 (1) Å and Fe2...Fe3 3.684 (1) Å]. These pentamers are seen perpendicular to the chain formed by the Fe1O₆ octahedra.

The Bi^V atoms are found in the interstitial sites between the chains. Bi shows sevenfold coordination, with Bi-O distances of between 2.357 (7) and 2.529 (6) Å.

Atom O1 is the oxide O atom. It is found on a mirror plane parallel to (010) and situated approximately at the centre of a triangle formed by three Fe³⁺ atoms [Fe1 (× 2) and Fe2; Fe1– O1 1.981 (4) Å and Fe2–O1 1.857 (8) Å]. The Fe–O_{oxide} distances are shorter on average than the Fe–O_{phosphate} distances, as would be predicted from the greater negativity of O²⁻. This phenomenon has also been observed in a comparison of the La–O distances in CaLa₄O(SiO₄)₃.

The P–O distances vary between 1.475 (8) and 1.568 (8) Å, and the O–P–O angles between 101.0 (4) and 113.9 (3)°, all of which are comparable with the values seen in phosphates in general.

Experimental

A large quantity of a powder of stoichiometry BiFe₂(PO₄)₃ was heated to the temperature of fusion (1323 K) in a porcelain crucible. The liquified material was held at this temperature for 24 h to obtain a homogeneous mixture and then subjected to slow cooling (5 K h⁻¹) to 1175 K, followed by cooling at a rate of 20 K h⁻¹ to room temperature. Red crystals of the formula $Bi_{0.4}^{V}Fe_3^{III}O(PO_4)_3$ were obtained.

Crystal data

Bi _{0.4} Fe ₃ O(PO ₄) ₃	$D_x = 3.890 \text{ Mg m}^{-3}$
$M_r = 552.04$	Mo K α radiation
Monoclinic, $P2_1/m$	Cell parameters from 35
a = 7.496 (1) Å	reflections
b = 6.308 (1) Å	$\theta = 8.5-13.2^{\circ}$
c = 10.125 (2) Å	$\mu = 12.579 \text{ mm}^{-1}$
β = 100.11 (1)°	T = 293 (2) K
V = 471.32 (13) Å ³	Chunk, red
Z = 2	$0.1 \times 0.1 \times 0.1 \text{ mm}$
Data collection	
Syntex P4 four-circle diffractometer	$R_{int} = 0.088$
$\theta/2\theta$ scans	$\theta_{max} = 30^{\circ}$
Absorption correction: ψ scan	$h = -1 \rightarrow 10$
(<i>XEMP</i> ; Siemens, 1990 <i>a</i>)	$k = -1 \rightarrow 8$
$T_{\min} = 0.244$, $T_{\max} = 0.284$	$l = -14 \rightarrow 14$
2030 measured reflections	3 standard reflections
1468 independent reflections	every 97 reflections
867 reflections with $I > 2\sigma(I)$	intensity decay: none
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0435P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.058$	where $P = (F_o^2 + 2F_o^2)/3$

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.128$ S = 0.8351468 reflections 115 parameters

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0435P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.056$ $\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.72 \text{ e} \text{ Å}^{-3}$

We have identified the heavy-atom occupants of the metallic sites by refining their occupancy factors in a prefinal refinement. This has enabled us to establish the identities of the metals in each location and also to eliminate the possibility of shared sites. The anisotropy of

Table 1

Selected geometric parameters (Å).

Bi1-O22	2.357 (7)	Fe3-O11vii	1.861 (8)
Bi1-O23 ⁱ	2.423 (6)	Fe3-O31 ^v	1.915 (8)
Bi1-O33 ⁱⁱ	2.442 (6)	Fe3-O21	1.951 (7)
Bi1-O13 ⁱⁱ	2.529 (6)	Fe3-O13 ⁱ	1.984 (6)
Fe1-O1 ⁱⁱⁱ	1.981 (4)	P1-O12	1.506 (8)
Fe1-O23	2.005 (5)	P1-O11	1.514 (8)
Fe1-O32	2.104 (5)	P1-O13	1.532 (6)
Fe1-Fe1 ^{iv}	3.1540 (5)	P2-O22	1.520 (8)
Fe2-O1	1.857 (8)	P2-O23	1.531 (6)
Fe2-O12 ^v	1.932 (8)	P2-O21	1.537 (8)
Fe2-O33 ^{vi}	1.985 (6)	P3-O31	1.475 (8)
Fe2-O21	2.154 (7)	P3-O33	1.520 (6)
Fe2-O22	2.183 (8)	P3-O32	1.568 (8)

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, -z$; (ii) $x, \frac{1}{2} - y, z$; (iii) x - 1, y, z; (iv) $-x, \frac{1}{2} + y, -z$; (v) x, y, z - 1; (vi) 1 - x, 1 - y, -z; (vii) x - 1, y, z - 1.

O1 reflects a disorder of this position about the mirror plane and thus the 'looseness' with which the oxo-O atom is bound in the solid.

Data collection: *XSCANS* (Siemens, 1991); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1990b).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1270). Services for accessing these data are described at the back of the journal.

References

- Abraham, F., Ketatni, M., Mairesse, G. & Mernari, B. (1994). Eur. J. Solid State Inorg. Chem. 31, 313–323.
- Bonazzi, P., Garbarino, C. & Menchetti, S. (1992). Eur. J. Mineral. 4, 23-33.
- Debreuille-Gresse, M. F., Drache, M. & Abraham, F. (1986). J. Solid State Chem. 62, 351–359.
- Dollase, W. A. (1969). Am. Mineral. 54, 710-717.
- Harrison, W. T. A., Gier, T. E. G., Stucky, G. D. & Schultz, A. J. (1990). J. Chem. Soc. Chem. Commun. pp. 540–542.
- Mizrahi, A., Wignacourt, J.-P. & Steinfink, H. (1997). J. Solid State Chem. 133, 516–521.
- Moore, E. P., Chen, H.-Y., Brixner, L. H. & Foric, C. M. (1982). Mater. Res. Bull. 17, 653–660.
- Schroeder, L. W. & Mathew, M. (1978). J. Solid State Chem. 26, 383-387.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1990a). XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1990b). XP. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thomas, P. A., Glazer, A. M. & Watts, B. E. (1990). Acta Cryst. B46, 333-343.
- Tordjman, P., Masse, P. & Guitel, J. C. (1974). Z. Kristallogr. 139, 103-115.
- Voloshina, I. V., Gerr, R. G., Antipin, M. Y., Tsirel'son, V. G., Pavlova, N. I., Struchkov, Y. T., Ozerov, R. P. & Rez, I. S. (1985). *Kristallografiya*, **30**, 668– 676.