Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bismuth(V) iron(III) tris(phosphate) oxide

Aicha Benabad, ${ }^{\text {a }}$ Karima Bakhous, ${ }^{\text {a }}$ Fatima Cherkaoui ${ }^{\text {a }}$ and Elizabeth M. Holt ${ }^{\text {b }}$ *

ababoratoire de Chimie du Solide Appliquée, Laboratoire Associé Francophone n501, Département de Chimie, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, Rabat, Morocco, and ${ }^{\mathbf{b}}$ Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Correspondence e-mail: betsy@biochem.okstate.edu
Received 21 September 1999
Accepted 13 July 2000
$\mathrm{Bi}_{0.4}^{\mathrm{V}} \mathrm{Fe}_{3}^{\mathrm{III}} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{3}$ crystallizes with two Fe atoms (one on an inversion centre and one on a mirror plane) displaying octahedral geometry and a third Fe atom (on a mirror plane) with trigonal bipyramidal coordination. Fe atoms are seen in oxygen-bridged chains. Bi^{V} atoms are found in the interstitial sites between these chains. Bi shows sevenfold coordination, with $\mathrm{Bi}-\mathrm{O}$ distances between 2.357 (7) and 2.529 (6) \AA.

Comment

There have been numerous studies of oxyphosphate structures (Tordjman et al., 1974; Abraham et al., 1994; Mizrahi et al., 1997). In particular, compounds of the type $A^{\mathrm{I}} B^{\mathrm{IV}} \mathrm{OPO}_{4}$ have been of interest because of their non-linear optical properties (Voloshina et al., 1985: Harrison et al., 1990; Thomas et al., 1990). Structures of the form $A_{x} B_{y} \mathrm{O}\left(X \mathrm{O}_{4}\right)_{3}$, where X is P or Si, A is a mono- or bivalent cation, and B is a trivalent cation, have not appeared widely in the literature. Among those known are $\mathrm{CaLa}_{4} \mathrm{O}\left(\mathrm{SiO}_{4}\right)_{3}($ Schroeder \& Mathew, 1978), seen in the hexagonal space group Pb_{3} / m, and $\mathrm{Pb}_{4} \mathrm{BiO}\left(\mathrm{PO}_{4}\right)_{3}$ (Moore et al., 1982) and $\mathrm{K}_{2} \mathrm{Bi}_{3} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{3}$ (Debreuille-Gresse et al., 1986), both of which crystallize in the orthorhombic space group Pnma.

We have also noted that the natural mineral piemontite, $\mathrm{Ca}_{2} \mathrm{Al}_{2} M\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{OH}$ (M is Fe or Mn ; Dollase, 1969; Bonazzi et al., 1992), seen in space group $P 2_{1} / m$, resembles compounds of the type $A_{x} B_{y} \mathrm{O}\left(\mathrm{XO}_{4}\right)_{3}$. This structure is characterized by two sites of high coordination occupied by Ca and three octahedral sites occuped by Al and $\mathrm{Fe} / \mathrm{Mn}$.

We have prepared a new member of the oxyphosphate family, the title compound, $\mathrm{Bi}^{\mathrm{V}}{ }_{0.4} \mathrm{Fe}_{3}^{\mathrm{III}} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{3}$, and determined its single-crystal X-ray structure. Unlike the other known oxyphosphates, this structure crystallizes in the monoclinic space group $P 2_{1} / m$.

Fig. 1 gives a projection view of the structure. The three Fe sites are situated on symmetry elements. Fe 1 is found on a centre of symmetry with octahedral geometry [average Fe1O $2.030(5) \AA$]. Fe 2 and Fe 3 are seen on a mirror plane perpendicular to the b cell edge. Fe 2 is octahedrally coordi-

Figure 1
A projection view of $\mathrm{Bi}_{0.4}^{\mathrm{V}} \mathrm{Fe}_{3}^{\mathrm{III}} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{3}$ in the (100) plane.
nated [average $\mathrm{Fe} 2-\mathrm{O} 2.016$ (6) \AA], while Fe 3 is found to have a trigonal-bipyramidal coordination geometry [average $\mathrm{Fe} 3-\mathrm{O} 1.939$ (7) \AA] (Fig. 2). The environment of Fe 3 is different from that of the corresponding atom in $\mathrm{CaLa}_{4} \mathrm{O}\left(\mathrm{SiO}_{4}\right)_{3}$, which shows a deformed octahedral geometry.

Figure 2
A view of the polymeric Fe array and the bridging O atoms in $\mathrm{Bi}_{0.4}^{\mathrm{V}} \mathrm{Fe}_{3}^{\mathrm{III}} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{3}$. Displacement ellipsoids are shown at the 50% probability level [symmetry codes (i), (iv), (v) and (vi) are as in Table 1 ; (viii) $1+x, y, z ;(\mathrm{ix}) 1+x, \frac{1}{2}-y, z ;(\mathrm{x}) 1+x,-\frac{1}{2}-y, z ;(\mathrm{xi}) 1+x, 1+y, z$; (xii) $\left.1-x, y-\frac{1}{2},-z\right]$.
$\mathrm{Fe}^{2} \mathrm{O}_{6}$ edge-sharing octahedra form an infinite chain extending in the b direction, with an $\mathrm{Fe} 1 \cdots \mathrm{Fe} 1$ distance of 3.154 (1) \AA. The three corner-sharing polyhedra, $\mathrm{Fe}_{6} \mathrm{O}_{6}$, $\mathrm{Fe}_{2} \mathrm{O}_{6}$ and $\mathrm{Fe}_{3} \mathrm{O}_{5}$, form a pentamer in the sequence $\mathrm{Fe} 3 \cdots \mathrm{Fe} 2 \cdots \mathrm{Fe} 1 \cdots \mathrm{Fe} 2 \cdots \mathrm{Fe} 3 \quad[\mathrm{Fe} 1 \cdots \mathrm{Fe} 2 \quad 3.418(1) \AA$ and $\mathrm{Fe} 2 \cdots \mathrm{Fe} 33.684$ (1) Å]. These pentamers are seen perpendicular to the chain formed by the $\mathrm{Fe}_{1} \mathrm{O}_{6}$ octahedra.

The Bi^{V} atoms are found in the interstitial sites between the chains. Bi shows sevenfold coordination, with $\mathrm{Bi}-\mathrm{O}$ distances of between 2.357 (7) and 2.529 (6) \AA.

Atom O 1 is the oxide O atom. It is found on a mirror plane parallel to (010) and situated approximately at the centre of a triangle formed by three Fe^{3+} atoms $[\mathrm{Fe} 1(\times 2)$ and $\mathrm{Fe} 2 ; \mathrm{Fe} 1-$ O1 1.981 (4) \AA and $\mathrm{Fe} 2-\mathrm{O} 11.857$ (8) \AA]. The $\mathrm{Fe}-\mathrm{O}_{\text {oxide }}$ distances are shorter on average than the $\mathrm{Fe}-\mathrm{O}_{\text {phosphate }}$ distances, as would be predicted from the greater negativity of O^{2-}. This phenomenon has also been observed in a comparison of the $\mathrm{La}-\mathrm{O}$ distances in $\mathrm{CaLa}_{4} \mathrm{O}\left(\mathrm{SiO}_{4}\right)_{3}$.

The $\mathrm{P}-\mathrm{O}$ distances vary between 1.475 (8) and 1.568 (8) A , and the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles between 101.0 (4) and 113.9 (3) ${ }^{\circ}$, all of which are comparable with the values seen in phosphates in general.

Experimental

A large quantity of a powder of stoichiometry $\mathrm{BiFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ was heated to the temperature of fusion (1323 K) in a porcelain crucible. The liquified material was held at this temperature for 24 h to obtain a homogeneous mixture and then subjected to slow cooling ($5 \mathrm{~K} \mathrm{~h}^{-1}$) to 1175 K , followed by cooling at a rate of $20 \mathrm{~K} \mathrm{~h}^{-1}$ to room temperature. Red crystals of the formula $\mathrm{Bi}_{0.4}^{\mathrm{V}} \mathrm{Fe}_{3}^{\mathrm{III}} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{3}$ were obtained.

Crystal data

$$
\begin{aligned}
& \mathrm{Bi}_{0.4} \mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{3} \\
& M_{r}=552.04 \\
& \mathrm{Monoclinic}, P 2_{1} / m \\
& a=7.496(1) \AA \\
& b=6.308(1) \AA \AA \\
& c=10.125(2) \AA \\
& \beta=100.11(1)^{\circ} \\
& V=471.32(13) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=3.890 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 35 \\
& \quad \text { reflections } \\
& \theta=8.5-13.2^{\circ} \\
& \mu=12.579 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Chunk, red } \\
& 0.1 \times 0.1 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

Data collection

Syntex $P 4$ four-circle diffractometer $\theta / 2 \theta$ scans
Absorption correction: ψ scan
(XEMP; Siemens, 1990a)
$T_{\text {min }}=0.244, T_{\text {max }}=0.284$
2030 measured reflections
1468 independent reflections
867 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.088 \\
& \theta_{\max }=30^{\circ} \\
& h=-1 \rightarrow 10 \\
& k=-1 \rightarrow 8 \\
& l=-14 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.128$
$S=0.835$
1468 reflections
115 parameters

Table 1
Selected geometric parameters (Å).

Bi1-O22	$2.357(7)$	$\mathrm{Fe} 3-\mathrm{O} 11^{\text {vii }}$	$1.861(8)$
$\mathrm{Bi} 1-\mathrm{O} 23^{\mathrm{i}}$	$2.423(6)$	$\mathrm{Fe} 3-\mathrm{O} 31^{\mathrm{v}}$	$1.915(8)$
$\mathrm{Bi} 1-\mathrm{O} 33^{\text {ii }}$	$2.442(6)$	$\mathrm{Fe} 3-\mathrm{O} 21$	$1.951(7)$
$\mathrm{Bi} 1-\mathrm{O} 13^{\mathrm{ii}}$	$2.529(6)$	$\mathrm{Fe} 3-\mathrm{O} 13^{\mathrm{i}}$	$1.984(6)$
$\mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{iii}}$	$1.981(4)$	$\mathrm{P} 1-\mathrm{O} 12$	$1.506(8)$
$\mathrm{Fe} 1-\mathrm{O} 23$	$2.005(5)$	$\mathrm{P} 1-\mathrm{O} 11$	$1.514(8)$
$\mathrm{Fe} 1-\mathrm{O} 32$	$2.104(5)$	$\mathrm{P} 1-\mathrm{O} 13$	$1.532(6)$
$\mathrm{Fe} 1-\mathrm{Fe} 1^{\text {iv }}$	$3.1540(5)$	$\mathrm{P} 2-\mathrm{O} 22$	$1.520(8)$
$\mathrm{Fe} 2-\mathrm{O} 1$	$1.857(8)$	$\mathrm{P} 2-\mathrm{O} 23$	$1.531(6)$
$\mathrm{Fe} 2-\mathrm{O} 12^{\mathrm{v}}$	$1.932(8)$	$\mathrm{P} 2-\mathrm{O} 21$	$1.537(8)$
$\mathrm{Fe} 2-\mathrm{O} 33^{\text {vi }}$	$1.985(6)$	$\mathrm{P} 3-\mathrm{O} 31$	$1.475(8)$
$\mathrm{Fe} 2-\mathrm{O} 21$	$2.154(7)$	$\mathrm{P} 3-\mathrm{O} 33$	$1.520(6)$
$\mathrm{Fe} 2-\mathrm{O} 22$	$2.183(8)$	$\mathrm{P} 3-\mathrm{O} 32$	$1.568(8)$

Symmetry codes: (i) $1-x, \frac{1}{2}+y,-z$; (ii) $x, \frac{1}{2}-y, z$; (iii) $x-1, y, z$; (iv) $-x, \frac{1}{2}+y,-z$; (v) $x, y, z-1$; (vi) $1-x, 1-y,-z$; (vii) $x-1, y, z-1$.

O1 reflects a disorder of this position about the mirror plane and thus the 'looseness' with which the oxo-O atom is bound in the solid.

Data collection: XSCANS (Siemens, 1991); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1990b).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1270). Services for accessing these data are described at the back of the journal.

References

Abraham, F., Ketatni, M., Mairesse, G. \& Mernari, B. (1994). Eur. J. Solid State Inorg. Chem. 31, 313-323.
Bonazzi, P., Garbarino, C. \& Menchetti, S. (1992). Eur. J. Mineral. 4, 23-33.
Debreuille-Gresse, M. F., Drache, M. \& Abraham, F. (1986). J. Solid State Chem. 62, 351-359.
Dollase, W. A. (1969). Am. Mineral. 54, 710-717.
Harrison, W. T. A., Gier, T. E. G., Stucky, G. D. \& Schultz, A. J. (1990). J. Chem. Soc. Chem. Commun. pp. 540-542.
Mizrahi, A., Wignacourt, J.-P. \& Steinfink, H. (1997). J. Solid State Chem. 133, 516-521.
Moore, E. P., Chen, H.-Y., Brixner, L. H. \& Foric, C. M. (1982). Mater. Res. Bull. 17, 653-660.
Schroeder, L. W. \& Mathew, M. (1978). J. Solid State Chem. 26, 383-387. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1990a). XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1990b). XP. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Thomas, P. A., Glazer, A. M. \& Watts, B. E. (1990). Acta Cryst. B46, 333-343.
Tordjman, P., Masse, P. \& Guitel, J. C. (1974). Z. Kristallogr. 139, 103-115.
Voloshina, I. V., Gerr, R. G., Antipin, M. Y., Tsirel'son, V. G., Pavlova, N. I., Struchkov, Y. T., Ozerov, R. P. \& Rez, I. S. (1985). Kristallografiya, 30, 668676.

